Grade 12 Mathematics
Interpretation: The derivative of a constant function is always zero. This means the gradient of the function $g(x) = \frac{1}{4}$ is zero at any point on the graph, indicating a horizontal line.
Explanation: The derivative of $g(x)$ is $g'(x) = -2x$. This means the gradient of the function $g$ is given by the expression $-2x$. The gradient of the graph depends on the value of $x$ - it is negative when $x > 0$ and positive when $x < 0$.
Therefore:
$$\begin{align*} g'(3) &= -10(3) \\ &= -30 \end{align*}$$First, expand $p(x)$:
$$\begin{align*} p(x) &= 4x(x-1) \\ &= 4x^2-4x \end{align*}$$Now find the derivative:
$$\begin{align*} p(x+h) &= 4(x+h)^2-4(x+h) \\ p'(x) &= \lim_{h \to 0}\frac{p(x+h)-p(x)}{h} \\ &= \lim_{h \to 0}\frac{4(x^2+2xh+h^2)-4x-4h-4x^2+4x}{h} \\ &= \lim_{h \to 0}\frac{4x^2+8xh+4h^2-4h-4x^2}{h} \\ &= \lim_{h \to 0}\frac{h(8x+4h-4)}{h} \\ &= \lim_{h \to 0}(8x+4h-4) \\ p'(x) &= 8x-4 \end{align*}$$Now find $f'(2)$:
$$\begin{align*} f'(2) &= 6(2)-5 \\ &= 12-5 \\ &= 7 \end{align*}$$Interpretation: The derivative of $f(x)$ at $x = 2$ is $7$. This means the gradient of the function $f$ at $x = 2$ is equal to $7$, and the gradient of the tangent to $f(x)$ at $x = 2$ is equal to $7$.