Practice Questions: Derivatives and Increasing/Decreasing Functions

Grade 12 Mathematics

1Question 1
Consider the function $f(x) = x^3 - 3x + 2$.
  1. Find the derivative $f'(x)$.
  2. Determine the $x$-values of the turning points by setting $f'(x) = 0$.
  3. For what values of $x$ is the function increasing?
  4. For what values of $x$ is the function decreasing?
Answer

(a) Find $f'(x)$:

$$\begin{align*} f(x) &= x^3 - 3x + 2 \\ f'(x) &= 3x^2 - 3 \end{align*}$$

(b) Find turning points by setting $f'(x) = 0$:

$$\begin{align*} 3x^2 - 3 &= 0 \\ 3x^2 &= 3 \\ x^2 &= 1 \\ x &= \pm 1 \end{align*}$$

Therefore, the turning points occur at $x = -1$ and $x = 1$.

(c) Function is increasing when $f'(x) > 0$:

$$\begin{align*} 3x^2 - 3 &> 0 \\ 3x^2 &> 3 \\ x^2 &> 1 \\ x &< -1 \text{ or } x > 1 \end{align*}$$

Therefore, $f(x)$ is increasing for $x \in (-\infty, -1) \cup (1, \infty)$ or $x < -1$ or $x > 1$.

(d) Function is decreasing when $f'(x) < 0$:

Therefore, $f(x)$ is decreasing for $x \in (-1, 1)$ or $-1 < x < 1$.

2Question 2
Given $g(x) = 2x^3 - 6x^2 + 5$, determine:
  1. The derivative $g'(x)$.
  2. The $x$-coordinates of the turning points.
  3. The intervals on which $g$ is increasing.
  4. The intervals on which $g$ is decreasing.
Answer

(a) Find $g'(x)$:

$$\begin{align*} g(x) &= 2x^3 - 6x^2 + 5 \\ g'(x) &= 6x^2 - 12x \end{align*}$$

(b) Find turning points:

$$\begin{align*} g'(x) &= 0 \\ 6x^2 - 12x &= 0 \\ 6x(x - 2) &= 0 \\ x &= 0 \text{ or } x = 2 \end{align*}$$

The turning points occur at $x = 0$ and $x = 2$.

(c) Function is increasing when $g'(x) > 0$:

$$\begin{align*} 6x(x - 2) &> 0 \end{align*}$$

Testing intervals: $x < 0$ or $x > 2$

Therefore, $g(x)$ is increasing for $x \in (-\infty, 0) \cup (2, \infty)$ or $x < 0$ or $x > 2$.

(d) Function is decreasing when $g'(x) < 0$:

Therefore, $g(x)$ is decreasing for $x \in (0, 2)$ or $0 < x < 2$.

3Question 3
Consider the cubic function $h(x) = -x^3 + 12x - 5$.
  1. Calculate $h'(x)$.
  2. Find the $x$-values where the gradient is zero.
  3. State the values of $x$ for which $h$ is increasing.
  4. State the values of $x$ for which $h$ is decreasing.
Answer

(a) Calculate $h'(x)$:

$$\begin{align*} h(x) &= -x^3 + 12x - 5 \\ h'(x) &= -3x^2 + 12 \end{align*}$$

(b) Find where gradient is zero:

$$\begin{align*} h'(x) &= 0 \\ -3x^2 + 12 &= 0 \\ -3x^2 &= -12 \\ x^2 &= 4 \\ x &= \pm 2 \end{align*}$$

The gradient is zero at $x = -2$ and $x = 2$.

(c) Function is increasing when $h'(x) > 0$:

$$\begin{align*} -3x^2 + 12 &> 0 \\ -3x^2 &> -12 \\ x^2 &< 4 \\ -2 &< x < 2 \end{align*}$$

Therefore, $h(x)$ is increasing for $x \in (-2, 2)$ or $-2 < x < 2$.

(d) Function is decreasing when $h'(x) < 0$:

Therefore, $h(x)$ is decreasing for $x \in (-\infty, -2) \cup (2, \infty)$ or $x < -2$ or $x > 2$.

4Question 4
Given the function $f(x) = x^3 + 3x^2 - 9x + 1$:
  1. Determine $f'(x)$.
  2. Calculate the $x$-coordinates of the turning points.
  3. Determine the nature of each turning point by testing the sign of $f'(x)$ on either side.
  4. For which values of $x$ is $f$ increasing?
Answer

(a) Determine $f'(x)$:

$$\begin{align*} f(x) &= x^3 + 3x^2 - 9x + 1 \\ f'(x) &= 3x^2 + 6x - 9 \end{align*}$$

(b) Calculate turning points:

$$\begin{align*} f'(x) &= 0 \\ 3x^2 + 6x - 9 &= 0 \\ x^2 + 2x - 3 &= 0 \\ (x + 3)(x - 1) &= 0 \\ x &= -3 \text{ or } x = 1 \end{align*}$$

(c) Nature of turning points:

  • For $x < -3$: $f'(x) > 0$ (increasing)
  • For $-3 < x < 1$: $f'(x) < 0$ (decreasing)
  • For $x > 1$: $f'(x) > 0$ (increasing)

At $x = -3$: Maximum turning point (changes from increasing to decreasing)

At $x = 1$: Minimum turning point (changes from decreasing to increasing)

(d) $f$ is increasing when $f'(x) > 0$:

Therefore, $f(x)$ is increasing for $x \in (-\infty, -3) \cup (1, \infty)$ or $x < -3$ or $x > 1$.

5Question 5
For the function $p(x) = -2x^3 + 3x^2 + 12x - 7$:
  1. Find $p'(x)$.
  2. Solve $p'(x) = 0$ to find the critical points.
  3. Determine for which values of $x$ the function is decreasing.
Answer

(a) Find $p'(x)$:

$$\begin{align*} p(x) &= -2x^3 + 3x^2 + 12x - 7 \\ p'(x) &= -6x^2 + 6x + 12 \end{align*}$$

(b) Solve $p'(x) = 0$:

$$\begin{align*} -6x^2 + 6x + 12 &= 0 \\ -6(x^2 - x - 2) &= 0 \\ x^2 - x - 2 &= 0 \\ (x - 2)(x + 1) &= 0 \\ x &= 2 \text{ or } x = -1 \end{align*}$$

The critical points are at $x = -1$ and $x = 2$.

(c) Function is decreasing when $p'(x) < 0$:

$$\begin{align*} -6x^2 + 6x + 12 &< 0 \\ -6(x - 2)(x + 1) &< 0 \\ (x - 2)(x + 1) &> 0 \end{align*}$$

Testing intervals: $x < -1$ or $x > 2$

Therefore, $p(x)$ is decreasing for $x \in (-\infty, -1) \cup (2, \infty)$ or $x < -1$ or $x > 2$.

6Question 6
Consider the function $k(x) = \frac{1}{3}x^3 - 2x^2 + 3x + 1$.
  1. Calculate the derivative $k'(x)$.
  2. Determine the turning points.
  3. Determine the intervals on which the function is increasing and decreasing.
Answer

(a) Calculate $k'(x)$:

$$\begin{align*} k(x) &= \frac{1}{3}x^3 - 2x^2 + 3x + 1 \\ k'(x) &= x^2 - 4x + 3 \end{align*}$$

(b) Find turning points:

$$\begin{align*} k'(x) &= 0 \\ x^2 - 4x + 3 &= 0 \\ (x - 1)(x - 3) &= 0 \\ x &= 1 \text{ or } x = 3 \end{align*}$$

The turning points occur at $x = 1$ and $x = 3$.

(c) Intervals of increase and decrease:

When $k'(x) > 0$: $(x - 1)(x - 3) > 0$

  • Increasing: $x \in (-\infty, 1) \cup (3, \infty)$ or $x < 1$ or $x > 3$
  • Decreasing: $x \in (1, 3)$ or $1 < x < 3$
7Question 7
A cubic function is given by $y = x^3 - 6x^2 + 9x + 2$.
  1. Find $\frac{dy}{dx}$.
  2. For what values of $x$ is the gradient of the curve equal to zero?
  3. Determine whether the function is increasing or decreasing at $x = 0$.
  4. State the interval(s) where the function is increasing.
Answer

(a) Find $\frac{dy}{dx}$:

$$\begin{align*} y &= x^3 - 6x^2 + 9x + 2 \\ \frac{dy}{dx} &= 3x^2 - 12x + 9 \end{align*}$$

(b) Where is the gradient zero?

$$\begin{align*} 3x^2 - 12x + 9 &= 0 \\ x^2 - 4x + 3 &= 0 \\ (x - 1)(x - 3) &= 0 \\ x &= 1 \text{ or } x = 3 \end{align*}$$

(c) At $x = 0$:

$$\begin{align*} \frac{dy}{dx}\bigg|_{x=0} &= 3(0)^2 - 12(0) + 9 \\ &= 9 > 0 \end{align*}$$

Since the derivative is positive, the function is increasing at $x = 0$.

(d) Function is increasing when $\frac{dy}{dx} > 0$:

$$\begin{align*} 3x^2 - 12x + 9 &> 0 \\ 3(x - 1)(x - 3) &> 0 \\ (x - 1)(x - 3) &> 0 \end{align*}$$

Therefore, the function is increasing for $x \in (-\infty, 1) \cup (3, \infty)$ or $x < 1$ or $x > 3$.

8Question 8
Given $f(x) = x^3 + ax^2 + bx + c$ and that $f'(x) = 3x^2 - 12x + 9$:
  1. Determine the values of $a$ and $b$.
  2. Find the coordinates of the turning points of $f$, given that $c = 5$.
  3. For which values of $x$ is $f$ decreasing?
Answer

(a) Determine $a$ and $b$:

If $f(x) = x^3 + ax^2 + bx + c$, then $f'(x) = 3x^2 + 2ax + b$

Given that $f'(x) = 3x^2 - 12x + 9$, we can compare coefficients:

$$\begin{align*} 2a &= -12 \quad \Rightarrow \quad a = -6 \\ b &= 9 \end{align*}$$

(b) Find turning points when $c = 5$:

So $f(x) = x^3 - 6x^2 + 9x + 5$

$$\begin{align*} f'(x) &= 0 \\ 3x^2 - 12x + 9 &= 0 \\ (x - 1)(x - 3) &= 0 \\ x &= 1 \text{ or } x = 3 \end{align*}$$

Find $y$-coordinates:

$$\begin{align*} f(1) &= (1)^3 - 6(1)^2 + 9(1) + 5 = 1 - 6 + 9 + 5 = 9 \\ f(3) &= (3)^3 - 6(3)^2 + 9(3) + 5 = 27 - 54 + 27 + 5 = 5 \end{align*}$$

The turning points are at $(1, 9)$ and $(3, 5)$.

(c) $f$ is decreasing when $f'(x) < 0$:

$$\begin{align*} 3x^2 - 12x + 9 &< 0 \\ 3(x - 1)(x - 3) &< 0 \end{align*}$$

Therefore, $f$ is decreasing for $x \in (1, 3)$ or $1 < x < 3$.

9Question 9
For the function $g(x) = -x^3 + 6x^2 - 9x + 4$:
  1. Determine $g'(x)$.
  2. Calculate the $x$-values of the stationary points.
  3. Use the derivative to determine whether each stationary point is a maximum or minimum.
  4. For which values of $x$ is the function increasing?
Answer

(a) Determine $g'(x)$:

$$\begin{align*} g(x) &= -x^3 + 6x^2 - 9x + 4 \\ g'(x) &= -3x^2 + 12x - 9 \end{align*}$$

(b) Calculate stationary points:

$$\begin{align*} g'(x) &= 0 \\ -3x^2 + 12x - 9 &= 0 \\ -3(x^2 - 4x + 3) &= 0 \\ x^2 - 4x + 3 &= 0 \\ (x - 1)(x - 3) &= 0 \\ x &= 1 \text{ or } x = 3 \end{align*}$$

(c) Nature of stationary points:

Test the sign of $g'(x)$ around each point:

  • For $x < 1$: $g'(x) < 0$ (decreasing)
  • For $1 < x < 3$: $g'(x) > 0$ (increasing)
  • For $x > 3$: $g'(x) < 0$ (decreasing)

At $x = 1$: Minimum (changes from decreasing to increasing)

At $x = 3$: Maximum (changes from increasing to decreasing)

(d) Function is increasing when $g'(x) > 0$:

Therefore, $g$ is increasing for $x \in (1, 3)$ or $1 < x < 3$.

10Question 10
The gradient of a cubic function is given by $f'(x) = 3x^2 + 6x - 24$.
  1. For what values of $x$ will the original function have turning points?
  2. Determine the intervals where the original function is increasing.
  3. Determine the intervals where the original function is decreasing.
  4. If $f(0) = 10$, $f(2) = -6$, and $f(-4) = 10$, write down the equation of $f(x)$.
Answer

(a) Turning points when $f'(x) = 0$:

$$\begin{align*} 3x^2 + 6x - 24 &= 0 \\ x^2 + 2x - 8 &= 0 \\ (x + 4)(x - 2) &= 0 \\ x &= -4 \text{ or } x = 2 \end{align*}$$

(b) Function is increasing when $f'(x) > 0$:

$$\begin{align*} 3x^2 + 6x - 24 &> 0 \\ 3(x + 4)(x - 2) &> 0 \end{align*}$$

Therefore, $f$ is increasing for $x \in (-\infty, -4) \cup (2, \infty)$ or $x < -4$ or $x > 2$.

(c) Function is decreasing when $f'(x) < 0$:

Therefore, $f$ is decreasing for $x \in (-4, 2)$ or $-4 < x < 2$.

(d) Find $f(x)$:

Since $f'(x) = 3x^2 + 6x - 24$, we integrate to find $f(x)$:

$$\begin{align*} f(x) &= x^3 + 3x^2 - 24x + c \end{align*}$$

Using $f(0) = 10$:

$$\begin{align*} f(0) &= 0 + 0 - 0 + c = 10 \\ c &= 10 \end{align*}$$

Therefore, $f(x) = x^3 + 3x^2 - 24x + 10$.

11Question 11
Consider the function $p(x) = x^3 - 9x^2 + 24x - 20$.
  1. Show that $p'(x) = 3(x - 2)(x - 4)$.
  2. Hence, or otherwise, determine the $x$-coordinates of the turning points.
  3. Determine for which values of $x$ the function $p$ is strictly increasing.
  4. Explain why this function has no stationary points where the function changes from increasing to increasing.
Answer

(a) Show that $p'(x) = 3(x - 2)(x - 4)$:

$$\begin{align*} p(x) &= x^3 - 9x^2 + 24x - 20 \\ p'(x) &= 3x^2 - 18x + 24 \\ &= 3(x^2 - 6x + 8) \\ &= 3(x - 2)(x - 4) \end{align*}$$

(b) Turning points:

$$\begin{align*} p'(x) &= 0 \\ 3(x - 2)(x - 4) &= 0 \\ x &= 2 \text{ or } x = 4 \end{align*}$$

(c) Function is strictly increasing when $p'(x) > 0$:

$$\begin{align*} 3(x - 2)(x - 4) &> 0 \\ (x - 2)(x - 4) &> 0 \end{align*}$$

Therefore, $p$ is strictly increasing for $x \in (-\infty, 2) \cup (4, \infty)$ or $x < 2$ or $x > 4$.

(d) Explanation:

A stationary point where the function changes from increasing to increasing would be called a point of inflection with horizontal tangent. For cubic functions with two distinct turning points (like this one), the function must change from increasing to decreasing (maximum) or decreasing to increasing (minimum) at each turning point. The function cannot have a stationary point where it remains increasing on both sides because the derivative would need to touch zero without changing sign, which doesn't occur at either $x = 2$ or $x = 4$ for this function.

12Question 12
A function has derivative $h'(x) = -3x^2 + 12x - 9$.
  1. Determine the critical values (where $h'(x) = 0$).
  2. Create a sign diagram for $h'(x)$ showing where it is positive and negative.
  3. Use your sign diagram to determine where the function $h$ is increasing and decreasing.
  4. What can you conclude about the nature of the turning points?
Answer

(a) Critical values:

$$\begin{align*} h'(x) &= 0 \\ -3x^2 + 12x - 9 &= 0 \\ -3(x^2 - 4x + 3) &= 0 \\ x^2 - 4x + 3 &= 0 \\ (x - 1)(x - 3) &= 0 \\ x &= 1 \text{ or } x = 3 \end{align*}$$

(b) Sign diagram for $h'(x) = -3(x - 1)(x - 3)$:

Test values in each interval:

  • $x < 1$ (e.g., $x = 0$): $h'(0) = -3(-1)(-3) = -9 < 0$ → Negative
  • $1 < x < 3$ (e.g., $x = 2$): $h'(2) = -3(1)(-1) = 3 > 0$ → Positive
  • $x > 3$ (e.g., $x = 4$): $h'(4) = -3(3)(1) = -9 < 0$ → Negative

(c) Intervals of increase and decrease:

  • Increasing: $x \in (1, 3)$ or $1 < x < 3$ (where $h'(x) > 0$)
  • Decreasing: $x \in (-\infty, 1) \cup (3, \infty)$ or $x < 1$ or $x > 3$ (where $h'(x) < 0$)

(d) Nature of turning points:

  • At $x = 1$: Changes from decreasing to increasing → Minimum
  • At $x = 3$: Changes from increasing to decreasing → Maximum